2,055 research outputs found

    Use of metaknowledge in the verification of knowledge-based systems

    Get PDF
    Knowledge-based systems are modeled as deductive systems. The model indicates that the two primary areas of concern in verification are demonstrating consistency and completeness. A system is inconsistent if it asserts something that is not true of the modeled domain. A system is incomplete if it lacks deductive capability. Two forms of consistency are discussed along with appropriate verification methods. Three forms of incompleteness are discussed. The use of metaknowledge, knowledge about knowledge, is explored in connection to each form of incompleteness

    Quaternary rupture of a crustal fault beneath Victoria, British Columbia, Canada

    Get PDF
    The seismic potential of crustal faults within the forearc of the northern Cascadia subduction zone in British Columbia has remained elusive, despite the recognition of recent seismic activity on nearby fault systems within the Juan de Fuca Strait. In this paper, we present the first evidence for earthquake surface ruptures along the Leech River fault, a prominent crustal fault near Victoria, British Columbia. We use LiDAR and field data to identify >60 steeply dipping, semi-continuous linear scarps, sags, and swales that cut across both bedrock and Quaternary deposits along the Leech River fault. These features are part of an ~1-km-wide and up to >60-km-long steeply dipping fault zone that accommodates active forearc transpression together with structures in the Juan de Fuca Strait and the U.S. mainland. Reconstruction of fault slip across a deformed <15 ka colluvial surface near the center of the fault zone indicates ~6 m of vertical separation across the surface and ~4 m of vertical separation of channels incising the surface. These displacement data indicate that the Leech River fault has experienced at least two surface-rupturing earthquakes since the deglaciation following the last glacial maximum ca. 15 ka, and should therefore be incorporated as a distinct shallow seismic source in seismic hazard assessments for the region.This research was supported by an NSERC Discovery grant to KM and NSF EAR IRFP Grant #1349586 to CR

    Running Genetic Algorithms in the Edge: A First Analysis

    Get PDF
    Nowadays, the volume of data produced by different kinds of devices is continuously growing, making even more difficult to solve the many optimization problems that impact directly on our living quality. For instance, Cisco projected that by 2019 the volume of data will reach 507.5 zettabytes per year, and the cloud traffic will quadruple. This is not sustainable in the long term, so it is a need to move part of the intelligence from the cloud to a highly decentralized computing model. Considering this, we propose a ubiquitous intelligent system which is composed by different kinds of endpoint devices such as smartphones, tablets, routers, wearables, and any other CPU powered device. We want to use this to solve tasks useful for smart cities. In this paper, we analyze if these devices are suitable for this purpose and how we have to adapt the optimization algorithms to be efficient using heterogeneous hardware. To do this, we perform a set of experiments in which we measure the speed, memory usage, and battery consumption of these devices for a set of binary and combinatorial problems. Our conclusions reveal the strong and weak features of each device to run future algorihms in the border of the cyber-physical system.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tech. This research has been partially funded by the Spanish MINECO and FEDER projects TIN2014-57341-R (http://moveon.lcc.uma.es), TIN2016-81766-REDT (http://cirti.es), TIN2017-88213-R (http://6city.lcc.uma.es), the Ministry of Education of Spain (FPU16/02595

    On the effect of COVID-19 pandemic in the excess of human mortality. The case of Brazil and Spain

    Full text link
    Excess of deaths is a technique used in epidemiology to assess the deaths caused by an unexpected event. For the present COVID-19 pandemic, we discuss the performance of some linear and nonlinear time series forecasting techniques widely used for modeling the actual pandemic and provide estimates for this metric from January 2020 to April 2021. We apply the results obtained to evaluate the evolution of the present pandemic in Brazil and Spain, which allows in particular to compare how well (or bad) these countries have managed the pandemic. For Brazil, our calculations refute the claim made by some officials that the present pandemic is "a little flu". Some studies suggest that the virus could be lying dormant across the world before been detected for the first time. In that regard, our results show that there is no evidence of deaths by the virus in 2019This work was supported in the form of funding in part by Ministerio de Ciencia e Innovacio´n of Spain (Grant No. PID2019-108079GB-C22/AEI/10.13039/501100011033)awarded to N

    Overall evaluation of Skylab imagery for mapping of Latin America

    Get PDF
    The author has identified the following significant results. Skylab imagery is both desired and needed by the Latin American catographic agencies. The imagery is cost beneficial for the production of new mapping and maintenance of existing maps at national topographic series scales. If this information was available on a near time routine coverage basis, it would provide an excellent additional data base to the Latin American cartographic community, specifically Argentina, Bolivia, Chile, Colombia, Dominican Republic, Guatemala, Paraguay, and Venezuela

    Biosensors in Rehabilitation and Assistance Robotics

    Get PDF
    Robotic developments in the field of rehabilitation and assistance have seen a significant increase in the last few years [...

    A Standardized Index for Assessing Seawater Intrusion in Coastal Aquifers: The SITE Index

    Get PDF
    A large number of coastal aquifers worldwide are impacted by seawater intrusion. A major aim of European Directives 2000/60/EC and 2006/118/EC is to achieve good ecological status in groundwater bodies, including coastal aquifers. To this goal, information is needed about the current state of, and changes over time in, individual aquifers. This information can be obtained by applying methods that determine the status of aquifers in an uncomplicated manner. Methods for this type of assessment must comply with three essential criteria. First, calculation of the index must be straightforward and should be based on easy-to-obtain or commonly available data. Next, the index should be able to highlight important characteristics in understandable terms. Finally, the results should be objective and should be expressed in such a way that different time periods and different aquifers can be compared. In this paper we describe the development of a method to characterize seawater intrusion that meets these criteria and is based on four basic parameters: surface area, intensity, temporality, and evolution. Each parameter is determined by specific calculations derived from the groundwater chloride concentrations. Results are specified as a numerical index and an alphanumeric code. This index, known as SITE, has been applied to four Mediterranean coastal aquifers. The standardized results allowed us to discriminate between, and objectively compare the status of these groundwater bodies. Further, this index will make it possible to prioritize management actions and evaluate the effectiveness of these actions over time
    corecore